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An equivalent length model of microdialysis sampling
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Abstract

One of the critical issues in microdialysis sampling is how to predict the extraction fraction (Ed), based on transport
properties of analytes in both tissues and probes. A one-dimensional (1-D) model has been used widely in previous
studies to predict Ed at the steady state. However, this model is valid only for long probes. To this end, an equivalent
length (EL) model was developed for probes with any length used in experiments. The key idea in the model was to
replace the probe length (L) in the 1-D model with an equivalent length (LE) when calculating transport resistance
in surrounding tissues. The length difference, (LE−L), was assumed to be proportional to the penetration depth of
analytes (�). The proportionality constant (�) was determined through minimizing the errors in predicted Ed. We
found that, the EL model could accurately predict Ed when �=0.369. The maximum error in EL model predictions
was �6%, for model constants varying in the same ranges as those in microdialysis experiments. This error was one
order of magnitude smaller than that in 1-D model predictions. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Microdialysis is currently one of a few tech-
niques that can be used to monitor drug delivery
in patients [1]. The technique has several advan-
tages [2–6]. First, it can be well tolerated by
patients, although, it is invasive. Second, microdi-
alysis sampling does not require anesthesia once
the probe is implanted. Thus, it allows a direct,
long term and repeated sampling of interstitial
concentration of drugs as well as local chemical
environment in tissues. The temporal resolution

of sampling can be as short as a minute. Third, it
does not require labeling of drugs with specific
markers, in contrast to other in vivo techniques
(e.g. magnetic resonance imaging (MRI) and
positron emission tomography (PET)). Fourth,
samples can be collected both before and after
treatment. Thus, each individual patient can serve
as his/her own control. This advantage reduces
the number of patients in experiments and effects
of patient-to-patient variations on experimental
results. Fifth, drug metabolism in tissues can be
studied locally, without systemic involvement,
through direct infusion of drugs via a microdialy-
sis probe and collection of metabolites using the
same probe. Sixth, it samples free drug instead of
total drug in tissues. The former is more directly
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correlated with the efficacy of drugs. Finally, the
sampling procedure excludes macromolecules in
the interstitial space, and thus enzymatic degra-
dation and/or inactivation of drugs during the
sample processing are eliminated. These advan-
tages make microdialysis an important sampling
technique in several research fields, including
pharmacokinetics and metabolism of drugs in
various organs [2–6], chemical microenviron-
ment in tissues, and cytokines involvement in
tissue damage and wound healing [7–9].

Microdialysis sampling is performed at non-
equilibrium states. The concentration of analytes
in the dialysate (Cout) is always lower than, al-
though, can be close to, that in the interstitial
space prior to probe implantation (C�). The ra-
tio of the concentrations (i.e. Cout/C�) is defined
as the recovery, Ed. When the concentration of
the analytes in the perfusate (Cin) is comparable
with Cout a more general definition of Ed is
(Cout−Cin)/(C�−Cin), which is also called ex-
traction fraction in the literature [10]. Ed de-
pends on transport properties of analytes in the
probe and tissues, as well as the perfusion rate
of dialysate. Once Ed is determined for a specific
combination of probes and tissues, the absolute
concentration of drugs in the interstitial space
can be calculated from experimental data of Cin

and Cout.
One of the key issues in microdialysis sam-

pling is, how to determine Ed through probe
calibration. Probe calibration is tissue- and
drug-dependent, since transport of drugs from
the surrounding tissues into the probe is a diffu-
sion process, which depends on molecular prop-
erties of drugs, as well as structures of the
probe and tissues. In addition, C� is unknown
in most applications, and may vary with time
due to metabolism of drugs. Thus, in vivo cali-
bration of microdialysis sampling is complicated
[6].

To better understand how different factors af-
fect in vivo calibration and microdialysis sam-
pling, various mathematical models have been
developed [11]. Most of them are based on em-
pirical curve fitting of experimental data. These
models are experimentally useful in calibrating
microdialysis probes, but cannot predict Ed in

terms of probe geometry and transport parame-
ters. Other models, referred to as explicit models
in the literature (for review see [6,11]), are capa-
ble of predicting Ed based on the theory of
molecular transport. General explicit models of
microdialysis can be easily developed, but it is
difficult to obtain analytical solutions when both
transport and metabolism of analytes are con-
sidered in a three-dimensional (3-D) space and
in a time-dependent manner. Therefore, explicit
models in previous studies had to either, neglect
transport across the microvessel wall and
metabolism of drugs in tissues [12], or assume
that the transport of analytes from tissues to the
probe was one-dimensional (l-D) and in the di-
rection perpendicular to the probe [10,13,14].
Most studies prefer the l-D assumption, since
transvascular transport and metabolism of drugs
are critical and cannot be neglected in pharma-
cokinetic analyses. A popular l-D model for the
steady state sampling was developed by Bungay
et al., [10]. To simplify the discussion, we
named the model as BMD after the first letters
of three co-authors. The BMD model provides a
set of analytical equations that can predict Ed as
a function of probe geometry and transport
parameters in tissues and the probe [10]. How-
ever, an important question remains to be an-
swered: what are the limitations of the 1-D
assumption?

The goal of the present study is 2-fold, (i) to
estimate the error in the predicted Ed caused by
the 1-D assumption at the steady state; and (ii)
to develop an EL theory to minimize the error.
The error analysis of Ed was performed through
comparisons of model predictions between the
BMD and a two-dimensional (2-D) model. The
2-D model was similar to the BMD model, ex-
cept that diffusion in the direction of perfusion
was considered as well. Based on the error anal-
ysis, an EL theory was developed. The key idea
in the new model was to use an EL to replace
the probe length in the BMD model so that the
same analytical equations can be used to predict
Ed. As a result, the maximum error in EL
model predictions was �6%, which was one or-
der of magnitude smaller than that in BMD
model predictions.
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2. Methods

Probe design depends on biological applica-
tions. Probes used in previous studies can be, in
general, divided into three categories, (i) cannula-
style; (ii) linear; and (iii) flow-through [5]. The
length of probes may vary from 1 mm to several
centimeters. The present study was focused on the
cannula-style probes, since they have been widely
used in pharmacokinetic studies. The key assump-
tions in the present study were, (a) the volume
fraction of interstitial fluid near the probe was
uniform and would not change during microdialy-
sis sampling; and (b) concentration distribution of
analytes was axisymmetric about the central axis
of the probe and at the steady state.

2.1. The 2-D mathematical model

2.1.1. Model geometry
The exchange of the analytes between the probe

and surrounding tissues was determined by its
transport in three continuous regions: the an-
nulus, the semipermeable membrane, and the tis-
sues (Fig. 1). These regions are concentric about
the central axis of the probe. Thus, the cylindrical
coordinate system was used in the study. Initially,
the concentration of analytes was uniform
throughout the entire tissue. Microdialysis sam-
pling caused a reduction in the concentration in
the region around the probe. The radius of the
region, �, depended on transport parameters and

the length of the probe. We found in a prelimi-
nary study that � was �6 mm for the ranges of
model constants used in this study. Thus, the
region of the simulation was chosen to be a
cylinder with the radius of 6 mm+r0, and the
height of 12 mm+L, where r0 and L were the
outer radius and the length of the probe, respec-
tively (Fig. 1).

2.1.2. Transport in the annulus
The transport of analytes in the annulus in-

volves both convection and diffusion. By carefully
controlling hydrostatic and osmotic pressures, one
can exclude convection across the probe mem-
brane so that diffusion is the only mode of trans-
port across the membrane and convection occurs
only in the probe due to the perfusion. The
present study assumed that the convection of the
dialysate in the probe was not disturbed by the
diffusion of analytes and determined only by the
infusion pressure. In addition, the study neglected
the entrance effect at the end of the annulus since
the length of the probe was approximately two
orders of magnitude larger than the thickness of
the annulus. Under these assumptions, the fluid
velocity was only in the z-direction (�z). The
boundary conditions of �z were �z=0 at r=r�

and at r=r�, respectively. The analytical solution
of the Navier–Stokes equation for �z was:

�z=
2Qd

�r�
2

ln(r/r�)− ((r/r�)2−1)/(k2−1) ln(k)
(k2+1)ln(k)+1−k2 (1)

Fig. 1. Model geometry. The probe consisted of a hollow fiber with a cannula placed along the central axis. The membrane of the
hollow fiber was permeable to analytes. The radii of the cannula, the inner membrane surface, and the outer membrane surface were
r�, r� and r0, respectively. The length of the probe, L, was defined as the length of the semipermeable membrane. The dashed line
marked the region of simulations in the 2-D mathematical model, which was from 0 to r0+6 mm in the r direction and from −6
mm to L+6 mm in the z direction.
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where Qd was the perfusion rate in the probe, r�

was the radius of the outer surface of the inner
cannula, r� was the radius of the inner surface of
the dialysate membrane, and k was the ratio of
r�/r�. Transport of analytes in the probe involved
convection in the z-direction and diffusion in
both r- and z-directions:

�z

�Cd

�z
=

1
r

�

�r
�

rDd

�Cd

�r
�

+
�

�z
�

Dd

�Cd

�z
�

(2)

where Cd and Dd were the concentration and the
diffusion coefficient of analytes in the dialysate,
respectively.

2.1.3. Transport across the probe membrane
Diffusion was the dominant mode of transport

across the probe membrane as discussed above.
Diffusion in the semipermeable membrane was
governed by the following equation:

0=
1
r

�

�r
�

rDm�m

�Cm

�r
�

+
�

�z
�

Dm�m

�Cm

�z
�

(3)

where Cm and Dm are the concentration and the
diffusion coefficient in the available space in the
membrane, respectively, �m is the available vol-
ume fraction in the membrane.

2.1.4. Transport in the surrounding tissue
Microdialysis probe samples analytes that can

be dissolved in the interstitial fluid. Transport of
hydrophilic analytes through cells is in general
negligible compared with that through the extra-
cellular space. Therefore, transcellular transport
was not considered in our model. The transport of
analytes in the extracellular space involved inter-
stitial convection, diffusion, and metabolism as
well as transport across the microvessel wall. It
has been well accepted that microdialysis will not
induce convection in tissues. Thus, it was ne-
glected in our model. The rate of metabolism of
analytes was assumed to be proportional to the
concentration. The rate of transport across the
microvessel wall was assumed to be proportional
to the concentration difference. The distribution
of microvessels was assumed to be continuous and
uniform throughout the tissue, since both the
diameter of and the distance between microvessels
are much smaller than the size of the region
affected by microdialysis (�). Taken together:

0=
1
r

�

�r
�

rDe�e

�Ce

�r
�

+
�

�z
�

De�e

�Ce

�z
�

−Km�eCe

+Kp�e(Cp−Ce) (4)

where Ce and De were the concentration and the
diffusion coefficient in the interstitial fluid, respec-
tively, �e was the available volume fraction of
analytes in the extravascular space, Km was the
irreversible metabolism rate constant in the ex-
travascular space, Kp was the exchange rate con-
stant between the plasma and the interstitial fluid,
and Cp was the concentration of analytes in the
plasma.

2.1.5. Boundary conditions
The concentration of analytes outside the simu-

lation region was nearly uniform. Thus, the con-
centration gradient was assumed to be zero at the
surfaces of z= −6 mm, z=6 mm+L, and r=6
mm+r0, respectively. Furthermore, we assumed
that (i) Cd=Cin at z=0 and �Cd/�z=0 at z=6
mm+L in the annular region within the probe,
(ii) the flux was zero on the surface of the inner
cannula (i.e. r=r�), and (iii) the concentrations
and the fluxes were continuous at the interfaces
between dialysate and probe membrane as well as
between probe membrane and surrounding tis-
sues, respectively. The concentration of analytes
in the interstitial fluid prior to microdialysis sam-
pling (C�) was CpKp/(Km+Kp).

2.2. The equi�alent length model

The BMD model predicts that:

Ed=1−exp
�

−
1

Qd(Rd+Rm+Re)
n

(5)

where Rd, Rm and Re were the transport resis-
tances in the dialysate, probe membrane, and
surrounding tissues, respectively. Rd and Rm can
be estimated as:

Rd=
13(r�−r�)
70�Lr�Dd

(6)

Rm=
ln(r0/r�)

2�LDm�m

(7)

To estimate Re, the BMD model assumed that
diffusion in tissues was only in the radial direction
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Fig. 2. Comparison of 2-D concentration distributions of sucrose in tissues surrounding (a) a short and (b) a long probe at the
steady state. All model constants were fixed at the baseline values as shown in Table 1, except for the probe lengths being (a) 1 mm
and (b) 30 mm, respectively. The perfusion rate was 1 �l/min in both cases. The concentration distributions in tissues were shown
as iso-concentration lines. The concentration was normalized by C�.

and that transport in regions z�0 and z�L was
negligible [10]. Based on this assumption, the
mass balance equation predicts that:

Re=
�K0(r0/�)/K1(r0/�)

2�r0LDe�e

(8)

where K0 and K1 are the modified Bessel function
of the second kind, of order zero and one, respec-
tively, and � was the penetration depth defined
as:

�=
� De

(Km+Kp)
(9)

We will show later that Eq. (8) overestimates
Re, since the 1-D assumption causes an underesti-
mation of the total rate of analyte transport into
the probe. The overestimation of Re will in turn
cause an underestimation of Ed (see Eq. (5)).

In order to correct the error without solving the
2-D model numerically, we developed an EL
model of microdialysis sampling. The key idea in

the new model was to construct a virtual probe
whose length was longer than the actual one in
order to compensate for the underestimation of
Ed by the BMD model. As a result, Eqs. (5)– (8),
could still be used to predict Ed, except that the
length of the probe was replaced by an equivalent
length (LE) in Eq. (8). In general, LE depended on
L and transport parameters of analytes in tissues.
However, the quantitative relationship between
these quantities could be complicated. Thus, we
derived an approximate equation to estimate LE.
The derivation procedure is as follows.

A careful examination of 2-D concentration
profiles shown in Fig. 2 suggested that the region
affected by microdialysis sampling could be ap-
proximated by a cylinder with a hemisphere on
either end. The length of the cylinder was the
same as that of the probe. The radii of the cylin-
der and the two hemispheres were proportional to
�. The proportionality constant was �. As a first
order approximation, we assumed that the con-
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centrations were proportional to the radial dis-
tances in the cylinder and the hemispheres, respec-
tively. Further, we assumed that the concentration
of analytes at the border of the affected regions
was C� and the radius of the probe was negligi-
ble compared with ��. When the metabolism was
negligible compared with the transvascular trans-
port, i.e. Km� �Kp, Eq. (4) predicted that C� �
Cp. Based on these assumptions, we found that
the total rate of transport, J, from the tissue into
the probe was:

J=
1
3

�C�Kp�2�2(L+��) (10)

On the other hand, the total rate of transport
could be derived based on the EL model, which
assumed that the transport of analytes was 1-D
within a cylinder with the length of LE and the
radius of ��. Thus:

J=
1
3

�C�Kp�2�2LE (11)

Combination of Eqs. (10) and (11) gave:

LE=L+�� (12)

The value of � was determined through mini-
mizing the differences in the predicted Ed between
the 2-D and the EL models. The procedure of
minimization is described in the next section.

Taken together, Re in the EL model was esti-
mated by:

Re=
�K0(r0/�)/K1(r0/�)
2�r0(L+��)De�e

(13)

whereas Rd and Rm were still estimated by the
same equations as those in the BMD model, i.e.
Eqs. (6) and (7), respectively. Finally, the Ed in
the EL model was calculated using Eq. (5).

2.3. Model constants and simulation procedures

2.3.1. Model constants
The baseline values of model constants are

shown in Table 1. They were obtained from previ-
ous studies of microdialysis of sucrose in brain
tissues [10]. In addition, we assumed that the rate
of metabolism, Km, was equal to zero in all simu-
lations. The model constants were fixed at their

baseline values in our simulations unless other-
wise specified in figure legends. Variation in spe-
cific model constants was introduced in our
simulations in order to determine effects of these
constants on the error in the predicted Ed. The
variation was based on the following
considerations.

2.3.1.1. Diffusion coefficient. Microdialysis has
been used to sample both small and large
molecules. The difference in the size of molecules
was reflected by the diffusion coefficient. In the
present study, sucrose was used as an example of
small molecules while dextrans with molecular
weight (MW) of 20 000 (D20) and 50 000 (D50)
were considered as examples of large molecules.
The diffusion coefficients of D20 and D50 in
water and granulation tissues in the rabbit ear
chamber were calculated using the equations in
[15]. For D20, Dd=Dm=1.11×10−6 cm2/s,
De=1.86×10−7 cm2/s. For D50, Dd=Dm=
7.15×10−7 cm2/s, De=1.23×10−8 cm2/s.

2.3.1.2. Exchange rate between the plasma and the
interstitial fluid. The Kp of sucrose is tissue-depen-
dent. It is equal to 2 per min in the liver [16] and
0.0021 per min in the brain. The range of Kp in
other tissues is likely between these values. Thus,
Kp was varied from 0.0021 to 2 per min.

Table 1
Baseline values of model constantsa

Qd (�l/min) 1
r� (mm) 0.125
r� (mm) 0.2
r0 (mm) 0.25
L (mm) 3

7.0×10−6Dd (cm2/s)
7.0×10−6bDm (cm2/s)

�m 0.2
3.1×10−6De (cm2/s)

�e 0.175
0Km (per min)
2.1×10−3Kp (per min)

a All baseline values, except Dm, were obtained from [10].
b The diffusion coefficient of solutes in the membrane, Dm,

was assumed to be equal to the diffusion coefficient in aqueous
solution, Dd.
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2.3.1.3. A�ailable �olume fractions. The �e is equal
to 0.2 in the liver [17] and approximately 0.4 in a
rat hepatoma (H5123) [18]. The baseline value of
�m was 0.2. The situation with �m=0.6 was also
simulated in the present study.

2.3.2. Procedures in numerical simulations
The 2-D model was solved numerically using a

finite difference method described in [19]. For
each set of model constants, Eq. (1) was first
solved to obtain fluid velocity in the probe. The
velocity profile was then substituted into Eq. (2),
and Eqs. (2)– (4) were solved simultaneously to
obtain concentration profiles and Ed through the
line-by-line iteration method [19]. The program
for numerical simulations was made by ourselves,
based on VISUAL C++. The probe length in the
simulation varied from 1 to 30 mm. The simulated
Ed was used to determine the value of � in the EL
model based on the least squares method in the
KALEIDAGRAPH software. This value of � was
then substituted into the EL model to predict Ed

when model constants other than the probe length
were varied. The errors in predictions were calcu-
lated through comparing simulation results be-
tween EL/BMD and 2-D models. In all
simulations, the error was calculated as a percent-
age of simulation results that deviated from those
predicted by the 2-D model.

3. Results

We simulated 2-D concentration distributions
at the steady state in tissues, based on the 2-D
model described in Section 2. The iso-concentra-
tion lines are shown in Fig. 2. The arrow heads
indicate the penetration depth, �. For both long
and short probes, � was smaller than the size of
our simulation region. To estimate the error
caused by the assumption of 1-D diffusion in
tissues, we calculated the relative difference in the
predicted Ed between the BMD model and the
2-D model. We found that Ed could be well
predicted by the BMD model when the probe was
long (Fig. 3). The maximum error was �3% for
the 30-mm probe (Fig. 3). However, the error in

Fig. 3. The relative errors in Ed predicted by the BMD model.
The predicted Ed was compared with that by the 2-D model
for five different probes. The length of the probes were 1 mm
(�), 2 mm (�), 3 mm (�), 10 mm (× ), and 30 mm (+ ),
respectively. Other model constants were fixed at the baseline
values as shown in Table 1. The relative errors were calculated
as (Ed

–
BMD−Ed

–
2D)/Ed

–
2D.

BMD model predictions was increased when the
probe length was decreased, and reached 50%
when L=1 mm (Fig. 3). In addition, we found
that the error in BMD model predictions was not
sensitive to the perfusion rate (Fig. 3), although
Ed decreased exponentially as the perfusion rate
was increased.

The error shown in Fig. 3 could be reduced if
the EL model was used. The key parameter in the
EL model was �, which was determined numeri-
cally through minimizing the difference in the
predicted Ed between 2-D and EL models. The
difference was calculated for the set of model
constants shown in Table 1, as well as for the
variations in the probe length from 1 to 30 mm
and the perfusion rate from 0.1 to 10 �l/min. The
fitted value of � was equal to 0.369. We then
substituted the value of � into the EL model and
calculated the relative difference between EL and
2-D model predictions. The results are shown in
Fig. 4. To further determine the accuracy of EL
model predictions, relative errors in the predicted
Ed based on other sets of model constants were
calculated (Fig. 5). The maximum error found in
all simulations was less than 6%.
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Fig. 4. The relative errors in curve-fitting of the EL model to
the data of Ed generated by the 2-D model. The model
constants, the meaning of symbols, and the error definition
were identical to those in Fig. 3.

model. The error analysis of both BMD and EL
models covered the entire ranges of model con-
stants found in microdialysis experiments. The
analysis demonstrated that the BMD model was
valid only for long probes. When the probe was
short, the 1-D assumption in the BMD model
caused a significant underestimation in Ed (Fig.
3), due to neglecting mass transfer into the probe
from both regions of z�L and z�0. The error
was reduced to less than 6% when the EL model
was used (Figs. 4 and 5).

There are at least two approaches to the correc-
tion of Ed predicted by the BMD model. One is to
directly solve the 2-D model, using numerical
methods. Another is to introduce an EL of probes
in the calculation of tissue resistance to analyte
transport. The second approach allowed investi-
gators to use the same analytical equations as in
the BMD model to predict Ed without solving
differential equations numerically. Although EL
model predictions are not 100% accurate, the
maximum error was �6% (Figs. 4 and 5). This
range of error covers the case when the probe
length approaches to the limit of cylindrical shape
assumption, and is one order of magnitude
smaller than that in BMD model predictions.

The perfusion rate had minimal effects on the
error in the predicted Ed based on both BMD (Fig.
3) and EL (Fig. 4) models. However, it might
significantly affect the concentration profiles shown
in Fig. 2 and the value of Ed (data not shown).
When the flow rate was extremely low (e.g. 0.1
�l/min) and the length of probe was very long (e.g.
30 mm), the concentration disturbance, caused by
the perfusion in the probe, was limited only in a
small volume near the tip of the probe. Beyond this
region, concentration of analytes reached an equi-
librium between the probe and surrounding tissues.
On the other hand, the concentration equilibrium
would never be reached when the perfusion rate
was high and the probe was short. The effects of
the perfusion rate on tissue concentration profiles,
however, had minimal effects on the error in the
predicted Ed shown in Figs. 3–5. The lack of effects
was likely due to the fact that Ed depended on the
total rate of transport rather than the details in
concentration profiles of analytes in tissues.

4. Discussion

An EL model was developed to minimize the
error in the predicted Ed, based on the BMD

Fig. 5. Effects of model constants on the relative errors in Ed

predicted by the EL model. � was fixed at 0.369. The model
constants were either fixed at the baseline values as shown in
Table 1 or varied as follows: (�) Dd=Dm=1.11×10−6

cm2/s, De=1.86×10−7 cm2/s; (�) Dd=Dm=7.15×10−7

cm2/s, De=1.23×10−8 cm2/s; (�) �e=0.2; (× ), �e=0.4;
(+ ), �m=0.6; (�), Kp=0.02 per min; (�) Kp=0.2 per min;
(�) Kp=2 per min.
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Simulation results shown in Figs. 4 and 5 sug-
gested that the error in the predicted Ed depended
on all model constants. However, the maximum
error in all cases was �6% (Figs. 4 and 5),
although model constants had varied �2-fold for
the available volume fraction (�e), �250-fold
for the diffusion coefficient in tissues (De), and
�950-fold for the rate of transvascular transport
(Kp). These data suggested that the error in Ed

predicted by the EL model was insensitive to
model constants.

5. Conclusions

An EL model was developed in the present
study. It allowed investigators to use simple and
analytical equations (i.e. Eqs. (5)– (7) and (13)) to
accurately predict Ed at the steady state for most
microdialysis probes currently used in experi-
ments. Thus, one does not have to numerically
solve the 2-D transport equations unless the con-
centration profiles of analytes need to be
calculated.

6. Nomenclature

Ed extraction fraction
Km irreversible metabolism rate constant

exchange rate constant between the plasma and the interstitial fluidKp

probe lengthL
equivalent lengthLE

perfusion rateQd

radial distance from the probe axisr
r�, r�, r0 radial distance to outer surface of the inner cannula, inner surface and outer surface of

dialysis membrane
flow velocity of dialysate in z direction�z

z distance along probe axis
� the distance of concentration disturbance caused by microdialysis sampling

penetration depth in tissues�

(LE−L)/��

r�/r�k

Symbols with different subscripts
C concentration of analytes
D diffusion coefficient of analytes
R transport resistance

available volume fraction of analytes�

Subscripts
dialysated

e extracellular space in tissues
inletin

m nembrane
out outlet
p plasma

infinite�
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